Blog

Prof Imre Berger elected Fellow of Academy of Medical Sciences

Imre BergerImre Berger, Professor of Biochemistry and Chemistry and Director of the Max Planck Bristol Centre for Minimal Biology, has been elected as a Fellow of the Academy of Medical Sciences for his outstanding contributions to biomedical science and notable discoveries during the COVID-19 pandemic.

This year, the Academy has elected 60 outstanding biomedical and health scientists to its Fellowship for their remarkable contributions to biomedical and health science and their ability to generate new knowledge and improve the health of people everywhere.

Professor Berger’s work includes a number of significant breakthroughs in the fight against COVID-19. His team discovered a druggable pocket in the SARS-CoV-2 Spike protein that could be used to stop the virus from infecting human cells, blocking transmission and forestalling severe COVID-19 disease. At the height of the pandemic, his team showed that exposing the SARS-CoV-2 coronavirus to a free fatty acid called linoleic acid locks the Spike protein into a closed, non-infective form inhibiting the virus’ ability to enter and multiply in cells, stopping it in its tracks.

The findings, published in Science, are now being used to develop new cost-effective treatments against all pathogenic coronavirus strains by Bristol-based Halo Therapeutics Ltd. The biotech company, co-founded by Professor Berger, is currently preparing for in-human clinical trials.

Other notable breakthroughs include the discovery that SARS-CoV-2-infected individuals could have several different SARS-CoV-2 variants hidden away from the immune system in different parts of the body, which may make complete clearance of the virus from infected persons, by their own antibodies, or by therapeutic antibody treatments, much more difficult.

Professor Berger is also pioneering new vaccine technologies. His team developed the ADDomer™, a thermostable vaccine platform for highly adaptable, easy-to-manufacture, rapid-response vaccines to combat present and future infectious diseases including COVID-19.  A key benefit of the platform is the speed with which candidate vaccines can be identified and could be manufactured in large quantities without refrigeration, significantly facilitating distribution world-wide. Vaccine innovator start-up Imophoron Ltd, co-founded by Professor Berger, is bringing ADDomer™-based vaccines to the market.

Professor Imre Berger said: “I am honoured to have been elected to the Fellowship of the Academy of Medical Sciences.

“I am also deeply grateful for the great effort by the fantastic scientists, technicians, engineers and students in my team, past and present, and the collaborators whom I have the privilege to work with. As researchers, the pandemic has presented us with immense challenges which has only highlighted the importance of scientific endeavour and medical science. It is therefore rewarding to have had our contributions recognised by the Academy that also seeks to improve and support advances in this field.”

Professor Dame Anne Johnson FMedSci, President of the Academy of Medical Sciences said: “Each of the new Fellows has made important contributions to the health of our society. The diversity of biomedical and health expertise within our Fellowship is a formidable asset that in the past year has informed our work on critical issues such as tackling the COVID-19 pandemic, understanding the health impacts of climate change, addressing health inequalities, and making the case for funding science. The new Fellows of 2022 will be critical to helping us deliver our ambitious 10-year strategy that we will launch later this year.”

The new Fellows will be formally admitted to the Academy on Monday 27 June 2022.

(This news story was originally published by the University of Bristol)

Research Associate in Synthetic Virus-derived Nanosystems (SVNs) for next generation protein and DNA delivery

** Applications are now closed **

As part of the Max Planck Bristol Centre for Minimal Biology (MPBC), a post-doctoral position is available to develop synthetic virus-derived nanosystems as next-generation protein and DNA delivery tools for genome engineering. This post is available for two years in the first instance, with potential to extend to July 2025.

The position is associated with the synthetic and structural biology laboratories of Prof Imre Berger (Biochemistry and Chemistry). The post holder would work in the newly refurbished laboratory for the MPBC, which is housed in the University of Bristol’s School of Chemistry and is a shared space with other MPBC researchers associated with the laboratories of Prof Dek Woolfson (Chemistry and Biochemistry) and Steve Mann FRS (Chemistry; protocell research). As with all projects in the MPBC, it is anticipated that the work will develop in collaboration with our Max Planck partners in Germany.

The position would be best suited to a talented, creative and ambitious early career researcher with a keen interest in synthetic and minimal biology of protein and DNA delivery systems. Essential skills for this role would include: experience with molecular biology and tissue culture techniques, construction and delivery of multifunctional synthetic gene circuitry in mammalian cells, CRISPR and non-CRISPR gene editing technologies and functional analysis by light and electron microscopy and/or FACS.

Additional info

  • More information, including the job description and how to apply, is available here.
  • For informal enquiries, please contact Professor Imre Berger (imre.berger@bristol.ac.uk)
  • The closing date for applications is 12 April 2022. 

Research Associate in protein design in the cell

** Applications are now closed **

As part of the recently established Max Planck-Bristol Centre for Minimal Biology (MPBC), a post-doctoral Research Associate position is available to develop de novo protein design in bacterial and eukaryotic cells. Funding for this post is available until July 2025.

The position is associated with the protein design laboratory of Prof Dek Woolfson (Chemistry and Biochemistry). The post holder would work in the newly refurbished laboratory for the MPBC, which is housed in the University of Bristol’s School of Chemistry and is a shared space with other MPBC researchers associated with the laboratories of Profs Imre Berger (Biochemistry; genome engineering) and Steve Mann FRS (Chemistry; protocell research). As with all projects in the MPBC, it is anticipated that the work will develop in collaboration with our Max Planck partners in Germany.

The position would be best suited to a talented and ambitious early career researcher with an interest in applying de novo protein design in synthetic and minimal biology. Essential skills for this role would include: experience in molecular cell biology in bacteria and/or eukaryotes, including the design and expression of synthetic genes in E. coli and/or HeLa cells or similar; plus biochemical and biophysical characterisation of proteins in cells using light and electron microscopy and/or FACS. Experience in the de novo design, synthesis, and structural characterisation of synthetic peptides and proteins would be desirable, but it is not essential for this post.

Additional info

  • More information, including the job description and how to apply, is available here.
  • For informal enquiries, please contact Dek Woolfson via email: d.n.woolfson@bristol.ac.uk
  • The closing date for applications is 20 March 2022. 

Bristol’s pioneering COVID-19 research prompts French Embassy visit

Representatives from the French Embassy visited University labs on 10 December to see some of the innovative COVID-19 research being undertaken at Bristol, including work on ADDomer™, a thermostable vaccine platform being developed by Bristol scientists to combat emerging infectious diseases.

Dr Rachel Millet and Arthur Belaud from the Embassy’s Innovation Branch, which seeks to drive France-UK business enterprise, met with scientists Professor Imre Berger and Frederic Garzoni, founders of Imophoron Ltd, the biotech start-up developing ADDomer that uses technology developed at an institution in France, and recently secured £4 million investment.

L to R: Arthur Belaud from the French Embassy, Dr Anne Westcott from the University, Dr Rachel Millet from the French Embassy and Professor Imre Berger at the University’s Max Planck Bristol Centre for Minimal Biology

During the visit, the delegation took a tour of labs in the University’s Max Planck-Bristol Centre for Minimal Biology (MPBC), the GW4/Wellcome Trust Cryo-EM facility led by Prof Christiane Schaffitzel, and Science Creates, the Bristol-based incubator, which is operated in partnership with the University and supports scientists and engineers in commercialising ground-breaking innovations. Having recently opened its second facility in the city’s Old Market, the party met with Science Creates founder and Bristol graduate Dr Harry Destecroix to discuss the future of deep-tech eco-systems.

Professor Imre Berger, Director of Bristol’s Max Planck Centre for Minimal Biology, said: “We are honoured to host this visit from the French Embassy’s Innovation Branch to share knowledge and showcase the pioneering research that is being done in collaboration with our European colleagues and institutions.”

Press release issued: 10 December 2021 on University of Bristol News and Features~ article here.

Protocells Spring Into Action

A Max Planck-led team of international scientists with an interest in protoliving technologies, has recently published research which paves the way to building new semi-autonomous devices with potential applications in miniaturized soft robotics, microscale sensing and bioengineering.

In a series of experiments, the researchers successfully embedded tens of thousands of artificial cell-like entities (protocells) within helical filaments of a polysaccharide hydrogel to produce tiny free-standing springs that are chemically powered from within.

Protocell-based micro-actuator; single giant protocells (red) are seen attached at both ends of a mechanically energized hydrogel filament (green).

Professor Stephen Mann, co-Director of the Max Planck Bristol Centre for Minimal Biology (MPBC) at Bristol, said: “We have a longstanding interest in protoliving technologies. One key challenge is how to interface protocell communities with their environment to produce functional relationships. The new work provides a step in this direction as it illustrates how endogenous chemical processes can be coupled to their energized surroundings to produce a programmable chemo-mechanical micro-system”.

Dr Ning Gao, also at the MPBC and School of Chemistry at the University of Bristol added: “We hope that our approach will motivate the fabrication of new types of soft adaptive microstructures that operate via increased levels of autonomy.” [Read the full article on the University of Bristol news page]

Paper:

Chemical-mediated translocation in protocell-based microactuators,’ by  Gao N, Li M, Tian L, Patil A J, Kumar P B V V Sand Mann S in Nature Chemistry.

German Ambassador visits the University of Bristol

On Wednesday 2 September, the German Ambassador to the Court of St James’s, Andreas Michaelis, paid a visit to the University of Bristol. Michaelis came to discuss with University representatives the opportunities to collaborate with Germany across research, education and mobility. The visit was a significant step in building and fostering the University’s relationship with the new Ambassador, in his first official trip to the UK outside of London.

The delegation toured the Max Planck Centre for Minimal Biology in the School of Chemistry and the GW4 Facility for High-Resolution Electron Cryo-Microscopy in the Life Sciences Building. Established in 2019, the Max Planck Bristol Centre consists of Directors based in both Bristol and Germany in a truly interdisciplinary and international partnership, set up by the University of Bristol and the Max Planck Society. The Centre pursues game-changing research and postgraduate training in the emerging field of minimal biology to address some of the most complex challenges in fundamental science.

Eatablishment of the Max Planck Bristol Centre in 2019. Professor Hugh Brady, Vice-Chancellor and President of the University of Bristol, and Professor Martin Stratmann, President of the Max Planck Society.

The GW4 Facility for High-Resolution Electron Cryo-Microscopy is closely aligned with the Wolfson Bioimaging Facility and provides world class cryo-microscopy and analysis tools, enabling researchers from diverse disciplines across the Great West region and beyond to study molecular processes using single-particle cryo-EM or cryo-tomography.

Director of the Max Planck Bristol Centre, Imre Berger, discussed the importance of international cooperation in science with Herr Michaelis on his tour of campus. The German delegation also met with Bristol Heads of School and Pro Vice-Chancellors, as well as members of the Bristol Max Planck and Cryo-EM facilities to observe our joint Europe-Bristol research endeavours. The Pro Vice-Chancellor for Global Engagement Erik Lithander

said: “We were delighted to be able to welcome the Ambassador to the University to have the opportunity to showcase some of the terrific research being done in collaboration with German colleagues and institutions. The University of Bristol is determined to keep European collaboration at the centre of its research strategy, and opportunities such as the Ambassador’s visit are an excellent way to accentuate this.”

German Ambassador Visit, 2 September 2020. Andreas Michaelis, German Ambassador to the Court of St James’s and Professor Imre Berger, Director of the Max Planck Bristol Centre for Minimal Biology discussing the importance of international cooperation in science.

**PhD Bioscience Opportunity- Taking De Novo Protein Design And Assembly Into Bacterial Cells**

Taking De Novo Protein Design And Assembly Into Bacterial Cells

Click here to apply.

Application deadline: Monday 2nd December 2019 (Midnight)
Host Institution: University of Bristol
Commencing: September 2020
Main Supervisor: Prof Dek Woolfson
Second Supervisor(s): Prof Nigel Savery and Prof Paul Verkade

Advancing the frontiers of bioscience discovery, the South West Biosciences Doctoral Training Partnership (SWBio DTP) aims to provide PhD students with outstanding interdisciplinary research training.


Project Description:

De novo protein design is the process of building entirely new protein sequences to adopt stable structures from scratch, and programming these further to perform desired functions. It is distinct from protein engineering, which aims to improve the stabilities and functions of natural proteins for given applications. In basic science, de novo protein design is the acid test of our understanding of sequence-to-structure/function relationships of natural proteins. In frontier bioscience, it presents possibilities for generating protein structures not yet observed in nature, i.e. the so-called ‘dark matter of protein-structure space’ (Woolfson et al., (2015) Curr Opin Struct Biol 33 16). In applied science and biotechnology, it offers routes to hyperstable proteins with functions not performed by natural proteins.

Over the past 5 – 10 years, protein designers’ abilities to deliver stable de novo proteins that fold and assemble as prescribed has advanced considerably. This has come through improvements in our understanding of sequence-to-structure relationships in proteins, advances in computational design methods, the reduced cost of synthetic peptides and genes, and increased speeds of high-throughput screening of protein libraries. These advances set new targets for the field of de novo protein design. One of these challenges is to take de novo proteins directly into cells to enhance and augment natural biological systems.

Our research groups—Woolfson, Savery and Verkade—have worked together for 5 years to help establish this nascent field of ‘protein design in the cell’. Our achievements include the design,
assembly, visualisation and functionalisation of a de novo cytoskeleton in E. coli (Lee et al. (2018) Nat Chem Biol 14 142); and the delivery of a series of de novo protein-protein interactions that operate in E. coli and substitute for protein-protein-interactions domains that control transcription (Smith et al.(2019) ACS Synth Biol 8 1284).

The proposed PhD project builds on these international and local developments in de novo protein design, and the collaborative environment that we have established, to advance protein design in the cell. Specifically, we will take protein-design modules that the Woolfson group has built and characterised to high resolution, combine them to make functional de novo assemblies in E. coli using synthetic-biology methods established by the Savery group, and visualise the assemblies directly in cells using the Verkade group’s expertise in light and electron microscopy. Our overall aim is to design de novo proteins that fold, assemble, disassemble and function on command in living cells.


How to apply:

To submit an application, please click here.
For eligibility requirements, please click here.
For further information, please contact the listed supervisor: Prof Dek Woolfson

**PhD Bioscience Opportunity – ADDomer: Synthetic Multiepitope Virus-Like Particle Platform for Next-Generation Vaccines**

ADDomer: Synthetic multiepitope virus-like particle platform for next-Generation vaccines.

Click here to apply.

Application deadline: Monday 2nd December 2019 (Midnight)
Host Institution: University of Bristol
Commencing: September 2020
Main Supervisor: Prof Imre Berger
Second Supervisor: Prof Christiane Schaffitzel
Collaborators: Fred Garzoni (Imophoron Ltd)

Advancing the frontiers of bioscience discovery, the South West Biosciences Doctoral Training Partnership (SWBio DTP) aims to provide PhD students with outstanding interdisciplinary research training.


Project Description:

Infectious diseases plague and decimate populations. Among the means at our disposal to counter this threat, vaccination has proven to be exceptionally powerful. Nonetheless, severe threats continue to challenge human health, notably from viruses that have adapted and emerged as new diseases or pathogenic strains. Ideally, a vaccine will be safe, non-replicative, efficient, and tunable, and easily produced at industrial scale. Recombinant virus-like particles (VLPs) can be ideal candidates to address these requirements and therefore hold enormous promise in the vaccine field. In this project, we will use ADDomer, a versatile, designer antigen-presenting VLP platform we developed. ADDomer is exceptionally stable, highly soluble and safe. This innovative ADDomer scaffold is uniquely suited to display hundreds of pathogenic epitopes and protein domains. Here, we will combine world-leading expertise in synthetic biology, in vitro selection/evolution and biodesign to achieve a step-change in the potency of our ADDomer technology. We are joined in our effort by our industrial partner, Imophoron Ltd, an award-winning start-up we founded to commercialize the technology. Building on this powerful synergy, we will utilize a range of biochemical, biophysical, structural, chemical and engineering approaches to design, create, characterize and roll-out highly effective next-generation ADDomer-based therapeutics to combat human disease.

How to apply:

To submit an application, please click here.
For eligibility requirements, please click here.
For further information, please contact the listed supervisor: Prof. Imre Berger

Calling all Research Technicians for exciting job opportunity

Location: Bristol
Salary: £30,046 to £33,797 per annum
Hours: Full time
Contract type: Permanent 
Closes: 20th October 2019

Click here to apply. 

The Berger group studies the structure, mechanism and cellular assembly of eukaryotic multiprotein assemblies in transcription regulation and develops enabling technologies for DNA transfer, genome engineering and multigene expression in eukaryotic cells, tissues and organisms. 

We are seeking up to two highly-skilled Research Technicians to actively participate in the ambitious research projects in our laboratory in the new Max Planck Centre for Minimal Biology at Bristol University. You will engage in designing and preparing multigene DNA constructs and utilize and further develop our award-winning MultiBac system for protein complex production and gene therapy applications. Outstanding applicants have a strong background in molecular biology and protein biochemistry. Experience in eukaryotic cell culture, baculovirus expression and/or a structural biology background is highly desirable.

Showing a high level of organization and independence, you will maintain the molecular biology and protein purification infrastructure including ordering of consumables and assist in operating the MultiBac platform in the eukaryotic expression facility. Moreover, you will archive and manage plasmid, baculovirus and protein stocks vital to the laboratory.

You will actively embrace the responsibility of managing technology platforms underpinning all research in the Berger lab.

Does this sound like you?

Click here to apply.

For informal enquiries please contact Imre Berger, +44 117 394 1857, imre.berger@bristol.ac.uk or Christiane Berger-Schaffitzel, +44 117 394 1869, christiane.berger-schaffitzel@bristol.ac.uk.

We welcome applications from all members of our community and are particularly encouraging those from diverse groups, such as members of the LGBT+ and BAME communities, to join us.

The University of Bristol is committed to equality and we value the diversity of our staff and students.

Better together

Max Planck Bristol Centre for Minimal Biology Director Professor Imre Berger, EPSRC SynBio CDT Student Julien Capin, and Bristol BioDesign Institute Scientific Manager Dr Kathleen Sedgley, were invited to present the Max Planck Bristol Centre for Minimal Biology at the British Embassy in Berlin on the 13 and 14 May 2019.

Russel Group Universities’ UK-Europe Knowledge Diplomacy Reception was opened by Chris Skidmore MP, and followed by a panel discussion Chaired by Dr Julie Maxton CBE, Executive Director of the Royal Society.

The UK and Germany work together more than they work with any other country in Horizon 2020, in fact the UK is involved in over half of all German-led EU bids. Between 2013 and 2017 70,000 scientific publications were co-authored between academics in the UK and Germany, 2,177 (3.1%) of which involved the University of Bristol.

Read more about the importance of UK-German collaboration, and the Max Planck Bristol Centre for Minimal Biology (page 11) of the Russell Group Knowledge Diplomacy Reception Brochure.

The second event was organised in collaboration between BUILA (the British Universities International Liaison Association), and their German counterpart DAIA, (the Deutsche Assoziation für Internationalen Bildungsaustausch) supported by the British Council and Universities UK International.

The Max Planck Bristol Centre for Minimal Biology was one of only 10 partnerships selected to to showcase collaborations between the UK, Germany and Europe. Here’s the team with University of Bristol’s Director International, Caroline Baylon.

Read the full ‘Better together’ news item