Vice-Chancellor visits Max Planck Bristol lab

University of Bristol VC Prof Evelyn Welch visited the Max Planck Bristol Centre for Minimal Biology in the School of Chemistry on 30 June.

Evelyn spoke with Centre Director Imre Berger, BBI Director Dek Woolfson and researchers including EPSRC-MPBC Doctoral Fellow Rafael Moreno Tortolero. She said it was “wonderful” to hear about the work being undertaken by the team, including research on silk, ALS, synthetic vaccines, protocells and artificial enzymes.

“Thank you to the Berger, Mann and Woolfson groups for demonstrating what happens when you share facilities and ideas so openly and effectively”, she said, adding: “I learned so much and look forward to the next visit”.

Members of the Max Planck lab line up for a group photo with Vice-Chancellor Evelyn Welch.

Welcome to EPSRC Doctoral Prize Fellow Rafa Moreno Tortolero

Rafael Orlando Moreno TortoleroWe are excited to introduce the newest member of the Max Planck Bristol Centre for Minimal Biology.

Rafael Moreno Tortolero has been awarded an EPSRC Doctoral Prize Fellowship to investigate the role of protein aggregates in health and disease.

We asked Rafa to introduce himself.

“I am a Venezuelan materials engineer by training (Simón Bolívar University, Venezuela), with an MSc in functional nanomaterials, a PhD in chemistry (University of Bristol, UK) and a penchant for fundamental medical research.

The latter has informed every step of my career so far. I worked with silk protein during my PhD to fabricate tissue engineering scaffolds. There, I stumbled with fundamental aspects of the protein that led me to continue my journey as an EPSRC Doctoral Prize Fellow at the very prestigious Max Planck Bristol Centre, under the mentorship of the eminent Prof. Imre Berger.

In this fellowship, I will explore a fascinating subject: the relationship between functional and aberrant protein aggregates with health and disease. More specifically, the relationship between silk and amyotrophic lateral sclerosis (ALS). Both biological phenomena, one producing healthy ex-vivo protecting structures (silk) and the other causing a devastating neuronal disease, are perhaps more related than previously thought and are at the centre of my research. Inspired by the silk production machinery, removal mechanisms of toxic ALS-related aggregates will be explored through standard biochemical and biophysical techniques. Aiming to discover protein-based palliative treatments for this devastating and untreatable disease.”

Bristol’s pioneering COVID-19 research prompts French Embassy visit

Representatives from the French Embassy visited University labs on 10 December to see some of the innovative COVID-19 research being undertaken at Bristol, including work on ADDomer™, a thermostable vaccine platform being developed by Bristol scientists to combat emerging infectious diseases.

Dr Rachel Millet and Arthur Belaud from the Embassy’s Innovation Branch, which seeks to drive France-UK business enterprise, met with scientists Professor Imre Berger and Frederic Garzoni, founders of Imophoron Ltd, the biotech start-up developing ADDomer that uses technology developed at an institution in France, and recently secured £4 million investment.

L to R: Arthur Belaud from the French Embassy, Dr Anne Westcott from the University, Dr Rachel Millet from the French Embassy and Professor Imre Berger at the University’s Max Planck Bristol Centre for Minimal Biology

During the visit, the delegation took a tour of labs in the University’s Max Planck-Bristol Centre for Minimal Biology (MPBC), the GW4/Wellcome Trust Cryo-EM facility led by Prof Christiane Schaffitzel, and Science Creates, the Bristol-based incubator, which is operated in partnership with the University and supports scientists and engineers in commercialising ground-breaking innovations. Having recently opened its second facility in the city’s Old Market, the party met with Science Creates founder and Bristol graduate Dr Harry Destecroix to discuss the future of deep-tech eco-systems.

Professor Imre Berger, Director of Bristol’s Max Planck Centre for Minimal Biology, said: “We are honoured to host this visit from the French Embassy’s Innovation Branch to share knowledge and showcase the pioneering research that is being done in collaboration with our European colleagues and institutions.”

Press release issued: 10 December 2021 on University of Bristol News and Features~ article here.

German Ambassador visits the University of Bristol

On Wednesday 2 September, the German Ambassador to the Court of St James’s, Andreas Michaelis, paid a visit to the University of Bristol. Michaelis came to discuss with University representatives the opportunities to collaborate with Germany across research, education and mobility. The visit was a significant step in building and fostering the University’s relationship with the new Ambassador, in his first official trip to the UK outside of London.

The delegation toured the Max Planck Centre for Minimal Biology in the School of Chemistry and the GW4 Facility for High-Resolution Electron Cryo-Microscopy in the Life Sciences Building. Established in 2019, the Max Planck Bristol Centre consists of Directors based in both Bristol and Germany in a truly interdisciplinary and international partnership, set up by the University of Bristol and the Max Planck Society. The Centre pursues game-changing research and postgraduate training in the emerging field of minimal biology to address some of the most complex challenges in fundamental science.

Eatablishment of the Max Planck Bristol Centre in 2019. Professor Hugh Brady, Vice-Chancellor and President of the University of Bristol, and Professor Martin Stratmann, President of the Max Planck Society.

The GW4 Facility for High-Resolution Electron Cryo-Microscopy is closely aligned with the Wolfson Bioimaging Facility and provides world class cryo-microscopy and analysis tools, enabling researchers from diverse disciplines across the Great West region and beyond to study molecular processes using single-particle cryo-EM or cryo-tomography.

Director of the Max Planck Bristol Centre, Imre Berger, discussed the importance of international cooperation in science with Herr Michaelis on his tour of campus. The German delegation also met with Bristol Heads of School and Pro Vice-Chancellors, as well as members of the Bristol Max Planck and Cryo-EM facilities to observe our joint Europe-Bristol research endeavours. The Pro Vice-Chancellor for Global Engagement Erik Lithander

said: “We were delighted to be able to welcome the Ambassador to the University to have the opportunity to showcase some of the terrific research being done in collaboration with German colleagues and institutions. The University of Bristol is determined to keep European collaboration at the centre of its research strategy, and opportunities such as the Ambassador’s visit are an excellent way to accentuate this.”

German Ambassador Visit, 2 September 2020. Andreas Michaelis, German Ambassador to the Court of St James’s and Professor Imre Berger, Director of the Max Planck Bristol Centre for Minimal Biology discussing the importance of international cooperation in science.

**PhD Bioscience Opportunity- Taking De Novo Protein Design And Assembly Into Bacterial Cells**

Taking De Novo Protein Design And Assembly Into Bacterial Cells

Click here to apply.

Application deadline: Monday 2nd December 2019 (Midnight)
Host Institution: University of Bristol
Commencing: September 2020
Main Supervisor: Prof Dek Woolfson
Second Supervisor(s): Prof Nigel Savery and Prof Paul Verkade

Advancing the frontiers of bioscience discovery, the South West Biosciences Doctoral Training Partnership (SWBio DTP) aims to provide PhD students with outstanding interdisciplinary research training.


Project Description:

De novo protein design is the process of building entirely new protein sequences to adopt stable structures from scratch, and programming these further to perform desired functions. It is distinct from protein engineering, which aims to improve the stabilities and functions of natural proteins for given applications. In basic science, de novo protein design is the acid test of our understanding of sequence-to-structure/function relationships of natural proteins. In frontier bioscience, it presents possibilities for generating protein structures not yet observed in nature, i.e. the so-called ‘dark matter of protein-structure space’ (Woolfson et al., (2015) Curr Opin Struct Biol 33 16). In applied science and biotechnology, it offers routes to hyperstable proteins with functions not performed by natural proteins.

Over the past 5 – 10 years, protein designers’ abilities to deliver stable de novo proteins that fold and assemble as prescribed has advanced considerably. This has come through improvements in our understanding of sequence-to-structure relationships in proteins, advances in computational design methods, the reduced cost of synthetic peptides and genes, and increased speeds of high-throughput screening of protein libraries. These advances set new targets for the field of de novo protein design. One of these challenges is to take de novo proteins directly into cells to enhance and augment natural biological systems.

Our research groups—Woolfson, Savery and Verkade—have worked together for 5 years to help establish this nascent field of ‘protein design in the cell’. Our achievements include the design,
assembly, visualisation and functionalisation of a de novo cytoskeleton in E. coli (Lee et al. (2018) Nat Chem Biol 14 142); and the delivery of a series of de novo protein-protein interactions that operate in E. coli and substitute for protein-protein-interactions domains that control transcription (Smith et al.(2019) ACS Synth Biol 8 1284).

The proposed PhD project builds on these international and local developments in de novo protein design, and the collaborative environment that we have established, to advance protein design in the cell. Specifically, we will take protein-design modules that the Woolfson group has built and characterised to high resolution, combine them to make functional de novo assemblies in E. coli using synthetic-biology methods established by the Savery group, and visualise the assemblies directly in cells using the Verkade group’s expertise in light and electron microscopy. Our overall aim is to design de novo proteins that fold, assemble, disassemble and function on command in living cells.


How to apply:

To submit an application, please click here.
For eligibility requirements, please click here.
For further information, please contact the listed supervisor: Prof Dek Woolfson

**PhD Bioscience Opportunity – ADDomer: Synthetic Multiepitope Virus-Like Particle Platform for Next-Generation Vaccines**

ADDomer: Synthetic multiepitope virus-like particle platform for next-Generation vaccines.

Click here to apply.

Application deadline: Monday 2nd December 2019 (Midnight)
Host Institution: University of Bristol
Commencing: September 2020
Main Supervisor: Prof Imre Berger
Second Supervisor: Prof Christiane Schaffitzel
Collaborators: Fred Garzoni (Imophoron Ltd)

Advancing the frontiers of bioscience discovery, the South West Biosciences Doctoral Training Partnership (SWBio DTP) aims to provide PhD students with outstanding interdisciplinary research training.


Project Description:

Infectious diseases plague and decimate populations. Among the means at our disposal to counter this threat, vaccination has proven to be exceptionally powerful. Nonetheless, severe threats continue to challenge human health, notably from viruses that have adapted and emerged as new diseases or pathogenic strains. Ideally, a vaccine will be safe, non-replicative, efficient, and tunable, and easily produced at industrial scale. Recombinant virus-like particles (VLPs) can be ideal candidates to address these requirements and therefore hold enormous promise in the vaccine field. In this project, we will use ADDomer, a versatile, designer antigen-presenting VLP platform we developed. ADDomer is exceptionally stable, highly soluble and safe. This innovative ADDomer scaffold is uniquely suited to display hundreds of pathogenic epitopes and protein domains. Here, we will combine world-leading expertise in synthetic biology, in vitro selection/evolution and biodesign to achieve a step-change in the potency of our ADDomer technology. We are joined in our effort by our industrial partner, Imophoron Ltd, an award-winning start-up we founded to commercialize the technology. Building on this powerful synergy, we will utilize a range of biochemical, biophysical, structural, chemical and engineering approaches to design, create, characterize and roll-out highly effective next-generation ADDomer-based therapeutics to combat human disease.

How to apply:

To submit an application, please click here.
For eligibility requirements, please click here.
For further information, please contact the listed supervisor: Prof. Imre Berger

Calling all Research Technicians for exciting job opportunity

Location: Bristol
Salary: £30,046 to £33,797 per annum
Hours: Full time
Contract type: Permanent 
Closes: 20th October 2019

Click here to apply. 

The Berger group studies the structure, mechanism and cellular assembly of eukaryotic multiprotein assemblies in transcription regulation and develops enabling technologies for DNA transfer, genome engineering and multigene expression in eukaryotic cells, tissues and organisms. 

We are seeking up to two highly-skilled Research Technicians to actively participate in the ambitious research projects in our laboratory in the new Max Planck Centre for Minimal Biology at Bristol University. You will engage in designing and preparing multigene DNA constructs and utilize and further develop our award-winning MultiBac system for protein complex production and gene therapy applications. Outstanding applicants have a strong background in molecular biology and protein biochemistry. Experience in eukaryotic cell culture, baculovirus expression and/or a structural biology background is highly desirable.

Showing a high level of organization and independence, you will maintain the molecular biology and protein purification infrastructure including ordering of consumables and assist in operating the MultiBac platform in the eukaryotic expression facility. Moreover, you will archive and manage plasmid, baculovirus and protein stocks vital to the laboratory.

You will actively embrace the responsibility of managing technology platforms underpinning all research in the Berger lab.

Does this sound like you?

Click here to apply.

For informal enquiries please contact Imre Berger, +44 117 394 1857, imre.berger@bristol.ac.uk or Christiane Berger-Schaffitzel, +44 117 394 1869, christiane.berger-schaffitzel@bristol.ac.uk.

We welcome applications from all members of our community and are particularly encouraging those from diverse groups, such as members of the LGBT+ and BAME communities, to join us.

The University of Bristol is committed to equality and we value the diversity of our staff and students.

Better together

Max Planck Bristol Centre for Minimal Biology Director Professor Imre Berger, EPSRC SynBio CDT Student Julien Capin, and Bristol BioDesign Institute Scientific Manager Dr Kathleen Sedgley, were invited to present the Max Planck Bristol Centre for Minimal Biology at the British Embassy in Berlin on the 13 and 14 May 2019.

Russel Group Universities’ UK-Europe Knowledge Diplomacy Reception was opened by Chris Skidmore MP, and followed by a panel discussion Chaired by Dr Julie Maxton CBE, Executive Director of the Royal Society.

The UK and Germany work together more than they work with any other country in Horizon 2020, in fact the UK is involved in over half of all German-led EU bids. Between 2013 and 2017 70,000 scientific publications were co-authored between academics in the UK and Germany, 2,177 (3.1%) of which involved the University of Bristol.

Read more about the importance of UK-German collaboration, and the Max Planck Bristol Centre for Minimal Biology (page 11) of the Russell Group Knowledge Diplomacy Reception Brochure.

The second event was organised in collaboration between BUILA (the British Universities International Liaison Association), and their German counterpart DAIA, (the Deutsche Assoziation für Internationalen Bildungsaustausch) supported by the British Council and Universities UK International.

The Max Planck Bristol Centre for Minimal Biology was one of only 10 partnerships selected to to showcase collaborations between the UK, Germany and Europe. Here’s the team with University of Bristol’s Director International, Caroline Baylon.

Read the full ‘Better together’ news item